
Plans for non-tech teams: a semantic
dissection from a Content Designer

Part 1: Contextually-defined terms versus lingo (and
why lingo’s bad)
Atlassian’s Content guidelines state that we “Avoid using jargon” largely because
jargon relies on everyone having the same definition in order to work.

Jira, and Plans in particular, relies heavily on Agile-specific terminology – dare I call it
jargon. Using this language, we’ve been able to make very precise and complicated
planning tools for those who understand this vernacular. However, it excludes
customers who don’t know this terminology – a common trait among those who plan
for non-tech teams (NTTs).

We need to move away from Agile-specific terms and instead define concepts and
features contextually. This will make concepts approachable to NTTs while not
alienate our existing Agile user base. This looks like:

1. reframing the planning experience to define concepts through specific attributes,
value-props, or outcomes while also

2. grounding content in the immediate context of the screen

What’s this about?

As part of the work around Plans for non-tech teams, we’re exploring how to
adapt Plans to be more accommodating to non-technical teams (I’ll refer to these
as NTTs).

This page focuses on the content experience, identifying ways we can modify our
language structures and overall content strategy to be more accommodating of
less technical audiences from non-software backgrounds.

This work is independent from [other work] which is working to redefine common
Jira terminology and items. Here, I’m referring to how we frame features and
define actions within Plans specifically.

For a quick example, let’s look at the team
configuration screen inside of Plans.

Today, when a planner sets up a plan, we ask
them whether a team is scrum or kanban →

If the plan is being made by someone with no
understanding of Agile, this prompts questions
like “What’s scrum?” and “What’s kanban?”
Naturally, an NTT lead looks up definitions of
these words, and they’ll find something like this
(taken from the Atlassian Agile Coach):

The question in the UI is asking about how
this team plans with specific regard to the
way their workflows are set up — ie, do
they use sprints? We ask which broad
methodology are they using with the
expectation that they know which label
applies to their situation. We don’t tell
them how to spot the difference.

Without a full understanding of the connotation of these terms, NTT users disengage
from the product.

This can be a recipe for frustration to users who already recognize the value of Plans
(via marketing demos, or other means); we’ve enticed the customer with benefits
then obscured it by undefined terminology.

How we improve
To make an experience that works for all users, we need to close the gap between
what’s being asked, and the impact of that decision. For this, we need to:

1. reframe the question to more directly correlate to the impact and

2. ground it in the context of the flow

With that said, we might rewrite the
prompt to ask:

Does this team use sprints?

This reframing shifts the dialogue
from:

“I don’t know what this is asking”

to a more certain

“That isn’t what I want.”

Which is fine! The point of a well-defined interface like this isn’t to get all planners
to use all features; it’s about empowering users to do what’s right for them.

NTTs might not want to use all the bells and whistles that tech teams use in Plans, but
at least they’ll know enough to make an informed decision. At the same time, those
who know what scrum and kanban are will recognize this as being an Agile-specific
concept and make the correct choice.

Part 2: Learn as you go with Progressive Disclosure
The idea behind progressive disclosure is that we teach customers about concepts
while they use and explore the product.

But our current use of language in Plans is the opposite of progressive disclosure.

We’ve leaned heavily on Agile lingo in the past because leveraging connotatively-
laden terms like “scrum” and “kanban” greatly reduces our design scope. But we do
so with the expectation that customers know the terminology – which excludes NTTs
and new customers.

In order to incorporate progressive disclosure principles into our designs, we need to
think about where a concept is introduced, how it’s framed, then consciously leverage
previous uses to build customer’s understanding of concepts and functionalities. In a
product like Plans, that might be in other parts of Jira.

 not good more good

As a result, a well-designed, progressively-disclosing experience will:

1. build on top of pre-existing knowledge

2. use the customer’s data and experience to demonstrate the value of the larger
concept

To demonstrate how we could better leverage progressive disclosure in Plans (nay,
Jira as a whole), let’s look at capacity planning.

Capacity planning is a way for planners to track the amount of planned work in order
to gauge whether the amount of work is feasible to get done in that timeframe. It
uses iteration lengths and issue estimates which both live outside of Plans. Yet we
don’t mention capacity anywhere in Jira at large.

Instead, the concept is presented as a standalone concept within Plans, devoid of the
powerful context and connections that comprise its key selling points. This framing
rewards those who know Jira well enough to link the two concepts but alienates NTTs
and new customers who have to learn this new concept and how to use it.

How we improve
Given that capacity uses two existing concepts in Jira, we can:

a) introduce the concept of capacity planning before

1. they ever need to use it in Plans

2. they upgrade (upsell opportunity)

b) use their own sprint and issue estimates to demonstrate how capacity works

c) reduce the onboarding learning curve when they use Plans for the first time

By priming customers with this language before they get into Plans, we can spend less
time explaining the concept and jump straight to its benefits.

 us now us if we stop being silly

Making this big of a change presents us with a lot of options for how to execute. As
before, the ideas in this section are for demonstrative purposes only and are taken
from my previous work: Does Teams still deserve its own tab?

To this end, we could:

• reference ‘capacity planning' in the board settings page

We introduce the idea of “capacity” on the board, predominantly in the settings and
the sprint information page of a Team’s board.

• add a Capacity field on the board

We let team planners add a value for a target amount of work per sprint and label it
Capacity. For non-Premium customers, it’d have little use aside from getting the
concept into planners heads, but for those on Premium plans, this is information that
could be defined by the team, removing the requirement that planners configure this
information

• automatically ingest sprints from boards

Instead of making planners set independent values for capacity in Plans, we ingest the
data from the associated boards: when the sprints start/end, the team velocity
(which we’re already working on automating).

What these options accomplish/demonstrate:
1. They allow us to leverage an existing concept that customers already understand

(issue estimates) to demonstrate how that scales up to Capacity planning.

2. Primes customers to the concept before they use it. For existing Premium users,
this means they’ll have a better understanding of the concept before they land
in Plans and non-Premium customers will be exposed to the concept before
upgrading.

3. Inside of Plans, we can jump straight into the insights of the capacity planning
tool and spend less time explaining what capacity is.

Any one of these would reduce the amount of learning and the time to value for
customers once they enter Plans.

Part 3: Customer built complexity
As I said before, progressive disclosure is all about layering information over time to
construct a concept for customers. While the goal for all audiences is the same (to
plan goodly), the experience of doing so isn’t. The features planners need, the
information their plan shows, and how changes are reflected are all dependent on
how their organization plans, not whether they see value in the tool.

The point of a well-designed interface isn’t to get all planners to use all features; it’s
about empowering users to make the right choices for their situation.

To this end, we should design for simplicity, then allow customers to layer on
complexity when they indicate they’re ready for use it. If a feature has little or no
value to a customer on a given planning path, then we shouldn’t show it to them in
the first place.

If we execute on this design principle, we can:

• lower the cognitive load of a customer
learning how to use the product for the
first time

• only show features that are relevant to their
planning experience and from which they’ll
derive value

• afford them the room to enable more features
as their planning becomes more mature

To demonstrate this, let’s look at a flow chart
for configuring kanban and scrum teams.

In this flow, a planner is setting up a team in
their plan. For capacity planning, we need to
know:

• scrum vs. kanban

• iteration length

• when those iterations happen

• estimation unit

But for kanban users, only one of those
decisions actually matters (kanban planners
can’t change the iteration length, when they
happen, or estimation units). Yet the kanban
planner needs to go through all of these steps to
get to the same end goal because they’re in a
flow designed for a different audience.

How we improve
Instead of thinking that every experience needs
to work for every user, we should work to
identify when we can simplify the experience
while also giving customers the chance to add
complexity as their planning practices mature.

In contrast to the example above, if a planner
chooses kanban instead of scrum, we can bypass
most of the confusing and irrelevant decisions
that have no impact.

Now instead of four decisions (three of which
give the illusion of choice), kanban planners
now have one. This decision also reflects
outward in that we can hide all of the scrum-
only information and concepts from their plan.

This concept can be applied to Plans at large:

• if they have no dependencies or releases in
their plans, do we need to show the tabs?

• do we need to show all of the settings all of
the time in the Plan settings page?

• can we hide warnings that aren’t applicable or
aren’t currently in use?

Or, on a larger, philosophical note, how do we
shift away from designing complexity and then abstracting out to meet simple
customers and and instead design experiences to be simple, then layer complexity on
top?

One minute but real example of this is when you’re buying something online, and
companies let you use your shipping address as your billing address.

The default experience is designed for
simplicity – using the same address. The
more complex customer path is for those
who are shipping to a different place
than where they live (maybe they’ll
send their new iPhone to the office
instead of their house).

However, this complexity is a detour
only those who self-select into it will
see.

Conclusion
As I’ve been thinking about this piece, I’ve come to the realization that we’re
progressing past the easy wins for improving Plans for a broader audience. We’ve
sanded down most of the rough edges and we’re left with more substantial changes
that aren’t going to be quick, nor will they be easy.

But that’s a half-empty way of thinking about this. The converse is that, if we’re
willing to take big swings at this, we can:

• empower customers to make better decisions and feel more in control of their
planning experience

• reduce complexity by hiding features from customers that they won’t find valuable

• create pathways for customers to grow as their planning rituals become more
mature

	Plans for non-tech teams: a semantic dissection from a Content Designer

